Three-Dimensional Detailed Simulation of Laminar Burners on Parallel Computers
نویسندگان
چکیده
Laminar flows involving chemical reactions play an important role in many practical applications. In this work a three-dimensional simulation dedicated to solving the Navier-Stokes equations in the low-Mach number limit is presented, using detailed chemistry and detailed transport. A complex three-dimensional configuration of a laminar methane/air burner is considered. Thanks to efficient numerical methods, accurate solutions can be obtained on such complex systems for acceptable computing times.
منابع مشابه
Detailed Chemistry Modeling of Laminar Diffusion Flames On Parallel Computers
We present a numerical simulation of an axisymmetric, laminar diiusion ame with nite rate chemistry on serial and distributed memory parallel computers. We use the total mass, momentum, energy, and species conservation equations with the compressible Navier-Stokes equations written in vorticity-velocity form. The computational algorithm for solving the resulting nonlinear coupled elliptic parti...
متن کاملSteady Flow Through Modeled Glottal Constriction
The airflow in the modeled glottal constriction was simulated by the solutions of the Navier-Stokes equations for laminar flow, and the corresponding Reynolds equations for turbulent flow in generalized, nonorthogonal coordinates using a numerical method. A two-dimensional model of laryngeal flow is considered and aerodynamic properties are calculated for both laminar and turbulent steady flows...
متن کاملHeat Transfer Characteristics of Porous Radiant Burners Using Discrete-Ordinate Method (S2-Approximation)
This paper describes a theoretical study to investigate the heat transfer characteristics of porous radiant burners. A one dimensional model is used to solve the governing equations for porous medium and gas flow before the premixed flame to the exhaust gas. Combustion in the porous medium is modeled as a spatially dependent heat generation zone. The homogeneous porous media, in addition to its...
متن کاملImplementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems
In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...
متن کاملCoupled simulation of an industrial naphtha cracking furnace equipped with long-flame and radiation burners
A coupled reactor/furnace simulation has been conducted for a 100 kt/a SL-II naphtha cracking furnace containing both long-flame and radiation burners. The computational fluid dynamics approach was used to simulate the flow, combustion and radiative heat transfer in the furnace. The software packages COILSIM1D and SimCO were used to account for the cracking process in the reactor coils. The sim...
متن کامل